Plastics in the Environment and the Circular Economy

Bronwyn Laycock

Head of Centre for Translational Polymer Research and Co-Director Centre for Advanced Materials Processing and Manufacturing School of Chemical Engineering and the Dow Centre for Sustainable Engineering Innovation

U3A Tuesday 9th July 2019

The Background

But only 9% is recycled

Fig. 2. Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons).

World Plastic Flows

L. Dilkes-Hoffman, P. Ashworth, B. Laycock, S. Pratt, P. Lant, Public attitudes towards bioplastics – Knowledge, perception and end-of-life management, submitted to Resources, Conservation and Recycling, 28th June 2019

https://www.nature.com/articles/ncomms15611/figures/1

Bioplastics and Biocomposites Research at

Translational Polymer Research Group • UQ Composites Group • Civil Composite Structures Group

copolymers

carbon fibres

Lignin-based PU foams

Fibre surface

analysis

Biocomposite Fertilisers

Wood-PHA Composites

Agri-waste

Wood/composite hybrid

Bio-composite process demonstration

structures

from synthesis to end of life

Methane to PHA

conversion

Purple **Phototrophic** Bacteria (PPB)

Pesticides and agrochemicals

Extraction and processing of nanocellulose fibres

Paunch **Bioomposites**

recovery

Fire performance of Biocomposites

Digital design and fabrication of hybridcomposite materials

CRICOS Provider No 00025B CRICOS code 00025B

Examples of current projects

Biopolymers from waste and methane

Lignin based polyurethane foams

Carbon fibres from waste PE and bioderived sources

Starch derived industrial products/nutrient recovery/films

Wood biopolymer composites

Biobased controlled release products

Low temperature catalytic depolymerisation

Conducting selfassembled peptide nanowires

Expertise

Polymer Degradation

Oxo- and bio-degradables, accelerated aging, lifetime estimation, mechanistic studies

Polymer Characterisation

DSC, NMR, FTIR, TGA, rheology, etc

Polymer Chemistry

Compositional distribution, micro-scale architecture, thermal and mechanical properties, polymer synthesis and modification

Bulk Processing

Extrusion, injection moulding, solvent casting, blending

Modelling

Accelerated & environmental degradation, diffusion

Survey – attitudes to plastic

Responses to the question 'please indicate how serious you think each of the following environmental issues are (scale 1-10)'. N = 2529

End of life feedback

Confusion over bioplastics

Most Australians select 'unsure' when asked to respond to statements such as 'all bioplastics are biodegradable', 'all plastics made from plants are biodegradable', some bioplastics are indistinguishable from regular plastics', 'bioplastics can have negative environmental impacts'.

The public is also unsure whether they have used a bioplastic before.

When asked about bioplastics in open-ended word association questions, the most common response is 'don't know'.

Comprehensive Concept of Circular Economy

Circular Economy Design Considerations

- Reusable
- Recyclable
- Reprocessible
- Biodegradable

Waste Avoidance

Polymer Performance Sustainable Feedstocks

- Sustainable biomass
- Supply chain waste
- Recycled materials
- CO₂

- Lifespan desing
- Tailored design for disassembly
- Extended producer responsibility
- Energy minimisation

Clean Synthesis

- Atom economy
- Reusable catalysts
- Less energy intense chemicals
- Green solvent
- Isocyanate alternatives

LCA – PHA/starch packaging versus PE

One result: The full system boundary

kg CO₂e emissions for the full system boundary for 1kg of packaged beef consumed at the house.

Rapid processing – reactive extrusion

Example of approach to repurposing of polymer waste

Rapid, industrially relevant, chemically efficient, solvent free

Controlled release of agrichemical

PLA, PHA and commercial product blends @ 3, 9, 20 weeks in 3 different soils

Rumen fermentation trial: slow release of toxin

Complexity of environmental biodegradation

Polymer characteristics

Diffusivity, morphology, crystallinity, density, voids, surface properties (chemistry, charge, hydrophobicity), micro- and macrophase separation

Material bulk characteristics

Particle size, shape, pore size, distribution, geometry, localised stress, mechanicals, hetero-vs. homogeneity, surface properties (roughness)

factors

Temperature, pH, oxygen, rainfall, pressure, metals present, nutrients, UV exposure (less important)

Environmental

Biological environment

Microbial community (density, enzymes available), fungi, roots, hyphae, macrofauna

Degradation environment

Aerobic vs. anaerobic, soil (type, WHC etc.), air, fresh water (sediment, mid column, surface), marine (sediment, mid column, surface), anaerobic digestion, in vivo, stomach (ingestion)

Processing

Solvent cast, melt pressed, extruded, pressure formed, orientated vs. non-orientated, post processing (annealing)

Create change

BUT....Marine biodegradation - literature

AND.....heterogeneity effects

Non-Arrhenius behaviour - Localised stress leading to crazing/stress cracking/crack propagation and pathways for permeation

Before elution/ degradation – 2.3% voids

After elution/ degradation – 8.5% voids

Create change

Release profile

ANOTHER OPPORTUNITY

Value-chain Food Waste losses: \$19 billion p.a.

REDUCE

food waste throughout the supply chain

TRANSFORM

unavoidable waste into valuable co-product

ENGAGE

with industry and consumers to deliver change

\$131 million research program over 10 years – integrates packaging with waste transformation

Unlocking the Potential

Partnerships to better understand and model:

- Polymer flows/pathways from manufacture to end of life
 - Types, morphologies, applications, particle sizes, design and tailoring, repurposing
- Degradation product analysis
 - Mechanisms of breakdown, toxicity assessment, physical impacts
- Degradation modelling and lifetime estimations
- Systems framework for understanding the impact of polymers in the environment and integration of biopolymers into a sustainable circular economy

Concept for plastics innovation for the new economy

Polymers in the Environment

A Systems Approach to Quantifying Impact

Polymer Characterisation

Polymer Flows

Polymer Degradation Polymer Impact

- Type
- Morphology
- Material characteristics

- Mapping strategies
- Model studies
- Mechanisms
- Lifetime estimation
- Structureproperty relationships

- Toxicity
- By-products
- Toxin concentration potential
- Physical impacts

UQ capabilities more broadly

MATERIALS

MANUFACTURE

SUPPLY CHAIN

CONSUMPTION

DISPOSAL

- New designs
- Alternative additives
- Renewable feedstocks
- New polymers

- Environmental impact
- Material flows
- Intervention optimisation
- · Geographical differences
 - Stakeholder engagement
 - Targets and agreements
 - Data-driven policy
 - Enabling change

Acknowledgements

Leela Dilkes-Hoffman

Assoc. Prof. Steven Pratt

Prof. Paul Lant

Prof. Peter Halley

Dr. Luigi Vandi

Prof. Susanne Schmidt

Dr. Paul Luckman

Ian Levett

Dr. Noni Creasey

Syarifah Syed Mahamud

Pawarisa Luongthongkam

Clement Chan

Samira Siyamak

Dr. Emilie Gauthier

