3D Printing

A Revolution?? or a Ruckus over Nothing??

Fred Stratford U3A 13/7/18

Today's Presentation

- Safety:
 - Reminder to be aware of emergency alert and evacuation alarms
- I expect to take about 90 minutes
 - Please ask questions as they arise
- I expect that at the end of the preset
 - if 3D printing is likely useful to you e
 - You will have some information as to
- Was the Media hype real?
 - Democratising Manufacturing
 - Industrial Revolution 2.0
- What is 3D printing?
 - Commonest 3D print process
 - What does a printer cost?
 - Some real prints

3D Printing Time Lapse

3D printing is:

- Not new (printers existed in the 1980's)
- Technologies:
 - Selective Laser Sintering (SLS) / Selective Laser Melting (SLM)
 - Electron Beam Melting (EBM)
 - Laminated Object Manufacturing (LOM)
 - Digital Light Processing(DLP)/ Stereo Lithography(SLA)
 - Fused Deposition Modelling (FDM) / Fused
 Filament Fabrication (FFF)
 - A form of Computer Numerical Control Machining
 - Molten plastic is built up layer by layer

Origin of Home 3D Printing

- RepRap (Replicating Rapid Prototyper) Project
 - Started in 2005 by Dr Adrian Bowyer at the University of Bath
 - Triggered by patent expiries

RepRap work
is "open
source" with
no restrictions
on usage
except for
attribution

The aim was to make a machine which could make itself

RepRap Darwin - First Device

- Hot end
 - "Hot Glue Gun on Steroids"
- Build plate
 - object grows here

The majority of printers since are improvements on this idea

Typical Contemporary Mid-Cost Printer

Typical Delta Type 3D Printers

Typical Commercial 3D Printer

3D Printer Drive Mechanism

3D Printer Drive Mechanism

Hot End Types

Bowden drive

- Drive hardware is remote
- Lower mass to move
- Less direct

Drive gear Hot end Bowden tube extrusion system

Direct drive

- Drive hardware on top
- Larger mass to move
- Very direct

Parts of Typical Hot Ends

https://3dprint.com/55647/e3d-lite6-hotend/

Time Lapse Print

SoHo Printers Range in Price & Quality

Source form	Supplier	Cost	Effort	Support	Overall
Kit	eBay/ AliExpress	<300 USD	Assemble and align it yourself	Look in the mirror (or YouTube)	Experienced only
Assembled	eBay/ AliExpress	<400 USD	Fix assembly and align yourself	Look in the mirror (or YouTube)	Experienced only
Major cloner (eg Wanhao/ Cocoon Create)	On- line/Retailer	<600 USD	Likely works out of the box	Manufacturer/ Many support groups	Decent starting experience
Prusa	Prusa	Kit/Assembled <800 / <1000 USD	Likely works out of the box	Manufacturer/ Many support groups	Good starting experience
Commercial printer	Too many to list	> 1000 USD	Plug and play	Manufacturer/ some support groups	Varies: Excellent to disappointing

- Restricted to heated bed metal framed 3D printers only with build volumes about 200x200x200mm
- You can always find a cheaper one! Prices shown are for guidance only
- Caveat emptor: Buyers remorse common in this space. Best to buy tomorrow!

Notes:

3D Scanners

Small scale Photogrammetry

- Use a digital camera to take lots of photos and then software combines them
 - 3DF Zephyr
 - AGISoft Photoscan Professional
 - Autodesk Recap

Structured Light Scan

- Typically small object on turntable
- Laser/projector throws patterns of light onto object

Multi-camera Scanners (body scanners)

- Really industrial scale Photogrammetry
- Typically uses custom software

Scanned results has problems

- shiny/dark areas hard to scan
- uniform areas scan badly
- holes have depth problems
- obscured areas not scanned at all

Combined printer / scanners exist

"Custom Designed Engineered" parts

- Significant design effort and intellectual input
 - Form follows function
 - Significant effort to measure
 - Must be designed to be printed
 - Comparatively easy to create an unprintable part
 - Be prepared to prototype
- Can be functional
- Strong enough not as good as moulded
- Parts are both:
 - Accurate (Close to the designed value) and
 - Repeatable (Parts made at different times will measure the same)

Example Part in Design Phase

3D Printing Workflow is complex

Resources

Repositories

- Thingiverse
- My MiniFactory
- Just search with Google

Scanners

- 3D Zephyr
- Autodesk Recap
- Agisoft Photoscan

Design tools

- TinkerCAD
- Blender
- SketchUp
- IronCAD
- Autocad
- Windows 3D Builder
- Meshmixer

Slicing Tools

- Cura
- Slic3r
- Simplify3D

Highly 3D Printed Finished Objects

Version 2.0 Version 3.0

Overall layout – Head of 3.0

Fabrication Materials

Material	Printability	Advantages	Limitations
PLA (Poly lactic acid)	Excellent	Good range of colours, not toxic. Bed need not be heated	Models distort if left in a hot car
ABS (Acrilonitrile Butadiene Styrene)	Problematic	Model is heat tolerant	Warping and splitting common. Heated bed essential, heated enclosure desireable
PETG (Polyethylene Terephthalate Glycol)	Good	Model is strong, heat tolerant. Food grade plastic	Stringing and blobbing on model
Flexible materials (Too many to nominate)	Problematic	Model is flexible	Can be almost impossible to extrude
Nylons (too many to nominate)	Problematic	Model is strong, heat tolerant	High extruder temperatures required
HIPS (High Impact Polystyrene)	Problematic	Can be used as support material but produces high quality models	Warping and splitting common. Heated bed essential, heated enclosure desirble
PVA Poly Vinyl Acrylic	Dissolves in water	Can be used as support material	Requires dual extruder

Warping off the print bed

Elephant's foot

Tall objects crack
Worse for
ABS/HIPS
especially if no
enclosure

First layer does not adhere to the print bed

Finishing Objects

- Objects look quite good "off the
- Trimming edges is a plan
- Sand paper ("wet and dry" and are your friend)
- Filler primer is useful for a good surface
- "Hammer tone" finish hides blemishes

So Is the Star Trek Replicator Close?

What isn't quite right

- Premade objects seldom "just what you want"
- It takes forever to design an object
- It often takes several iterations to get it right the right object and a printable object
- It takes hours to print a typical object of any reasonable size takes 14 to 20 hours, sometimes longer
- The print may fail for any number of reasons
 - The power might fail
 - The printer filament feed could jam
 - Filament could run out
 - Filaments tangle
 - First layer problems

But when it works

(at least 75% of the time)

You are presented with models which:

- Work as engineering parts
- Are the size you designed
- Often could not be made any other way
- Can be "finished" to look good
- You can have more without effort

And it can only get better:

- The competition is still ferocious
- New 3D printer every day.
- Racing to the bottom in cost

So is this a revolution or not?

Media hype a couple of years ago unjustified

- Technology not ready printers were not plug and play
- Design is not for everyone exacting and demanding work
- Limited to plastic for home users
- Plastics tricky to use, Ideal plastic still coming
- Parts of limited strength
- Slow printing unsuited to media attention span

So Industrial Revolution 2.0 didn't really arrive on cue

Media now saying technology is "dead" - also wrong

- Technology is better good plug and play printers exist
- Design tools are better and "friendlier"
- Still limited to plastic for home users, but a greater range of plastics
 - Some users are casting metal using "lost plastic" or lost wax
- Parts still limited in strength
- Still slow. Speed is limited by materials and method

Result: Entirely practical for prototypes and small production

Useful Resources

The following YouTubers are worth looking at:

Channel	Link	
Thomas Sanladerer Germany	https://www.youtube.com/user/ThomasSanladerer	
Makers Muse (Angus Deveson) - Australia	https://www.youtube.com/user/TheMakersMuse	
CHEP Chuck Hellebyuck - USA	https://www.youtube.com/user/beginnerelectronics	
3D Printing Nerd Joel Telling - USA	https://www.youtube.com/channel/UC 7aK9PpYTqt08ERh1MewlQ	
CNC Kitchen Stefan Hermann - Germany	https://www.youtube.com/channel/UCiczXOhGpvoQGhOL16EZiTg	
SexyCyborg (Naomi Wu) – China	https://www.youtube.com/channel/UCh_ugKacslKhsGGdXP0cRRA	

Not exhaustive by any means but will get you started

Questions??

